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REFLECTION OF OBLIQUE SHOCK WAVES
IN ELASTIC SOLIDS

T. W. WRIGHT

Ballistic Research Laboratories, Aberdeen Proving Ground, Md. 21005

Abstract—The reflection of a finite elastic plane shock wave at a plane boundary is examined. A semi-inverse
method of solution is used. Only angles of incidence which are less than a critical angle are considered in detail.
In general there are three reflected waves which may be either simple waves or shock waves. It is found that either
kind of reflected wave may be completely specified by a single parameter provided conditions ahead of the wave
are known. Boundary conditions at the plane surface must be solved for the specifying parameters. A simple
existence theorem is stated, critical angle cases are discussed, and several simple examples are presented.

1. INTRODUCTION

Many recent papers have been devoted to the search for solutions of finite amplitude wave
problems in solids. These have been principally of two types. On the one hand, several
authors have solved initial-boundary value problems in one spatial dimension.t On the
other hand several authors have treated the conditions for existence of singular surfaces
and for growth or decay at quite arbitrary acceleration fronts. Such solutions are of great
use in understanding and predicting major aspects of the response of elastic materials to
finite excitations. The solution presented here is offered in the same spirit. That is to say,
it should be regarded as a general case which may be used to describe important aspects of
more detailed boundary-initial value problems.

Specifically the problem to be treated is the reflection of a finite plane shock wave from
a plane surface where the angle between the shock wave and the surface is in the range
0 < 6 < 0,. The maximum angle, 9,, for which the simple reflection solutions hold is a
critical angle and cannot be given in general, but must be determined in each special case.
The exact value will depend on such factors as material constitution, incident shock strength,
conditions ahead of the incident shock, and surface boundary conditions. Critical angle
phenomena will be described qualitatively, but are not the primary focus here.

A strictly mechanical theory is used. Specifically, the material is assumed to be homo-
geneous, simple and elastic [9]. Thus the stress is a function solely of the deformation
gradient taken with respect to a fixed reference configuration which is assumed to be stress
free. Since no thermal effects are included, criteria other than entropy increase must be
introduced to determine shock wave stability.

The reflected waves are found by a semi-inverse method. The incident shock is assumed
to be given a priori so that &, the line of intersection with the boundary, moves normal to
itself at a known fixed speed. The basic assumption is then made that the reflection consists
of families of simple waves [10], each wavelet of which passes through .. In general three

T References [1-5] are representative.
1 References [6-8] are representative.
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simple waves are required. The problem then reduces to the determination of the distn-
bution and strength of the wavelets by means of ordinary differential equations. In some
cases a simple wave must be replaced by a shock wave.

In any case the solutions are of the two dimensional steady state type. They are two
dimensional in that there is no dependence on a coordinate with axis parallel to . They
are steady state in that an observer moving parallel to the surface and at the same speed
as .¢ will see only fixed deformation fields. Solutions of this type may be expected to have
validity locally or asymptotically for curved shock reflections or they may hold exactly
in finite regions bounded by other discontinuity surfaces.

In Section 2 a summary of the necessary finite elasticity theory and shock wave theory
is given. The geometry of normal and wave cones behind the incident shock is discussed in
Section 3. These two sections contain standard material in the main and are included to
make the paper relatively self contained. References to complete expositions are given at
the beginning of each subsection where possible.

The first two subsections of Section 4 contain the main substance of the paper. There
the general solution for reflected simple waves is presented. The remainder of Section 4
contains comments on existence, reflected shock waves, and critical angles. Several special
cases are discussed in Section 5.

2. ELASTIC SIMPLE WAVES AND SHOCK WAVES
Finite elasticity [9]

Let (X', X%, X% and (x!, x?, x*) be the Cartesian coordinates of an elastic particle.
Here X™* are the coordinates of the particle in an unstressed reference state and x' are the
coordinates in the present configuration. The two coordinate sets are related by a non-
singular one parameter family of mappings x' = x'(X* t) where the parameter ¢ is time.
The deformation gradient is denoted by F; = x/, = dx//0X* and the velocity is denoted
by u' = X' = dx'/0t. We have det F # 0.1

If the stress and velocity fields are differentiable, then the equations expressing balance
of momentum, and moment of momentum respectively are:

T = poit "

FIT® = FiT7

Here p, is the mass density in the reference configuration and T is the Piola stress tensor
or engineering stress (i.e. force per unit reference area). The Piola stress tensor is related to
the Cauchy stress tensor t by the formula T = (det F) t(F~ YT where the superscript T
denotes transposition.

If the functions x'(X* t) are continuous everywhere, but have discontinuous first
derivatives on some propagating surface, X, then the differential balance conditions must
be replaced by jump conditions on X. That which corresponds to equation (1,) is:

IT*IN, = —poV '], 12y

+ Direct notation as well as index notation will be used when convenient. Thus the tensor ¥ has Cartesian
components F', the vector u has Cartesian components u', etc.
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Moment of momentum adds nothing new, but kinematic jump conditions must be adjoined

x1=0
IF;] = &N, &)
[ui] = —d'V.

In these equations N is the unit normal to Z in the reference configuration and points
in the direction of propagation. The speed of propagation along the normal is  and a is
the amplitude vector of the jump. The square brackets indicate the jump in the quantity
enclosed taken across £; thus [K] = K* — K~ where the plus and minus signs indicate
the limit values at a point on the surface taken from the side of positive and negative normal
respectively. Jump conditions for acceleration waves or other higher order singular surfaces
could also be written, but will not be needed in the sequel.

The constitutive equations are assumed to be of the form

T = T(F) (4)

where the response function satisfies (1,) identically and may be subject to restrictions of
material symmetry as well as the principle of material indifference.

Equations (1)-(4) together with appropriate initial and boundary conditions form a
strictly mechanical theory of simple elastic materials.

Simple waves [10]

Simple waves are defined to be regions of space-time in which the deformation gradient
and velocity fields are continuous and depend on a single parameter, say y = G(X, t).
Regions of constant y are propagating surfaces with unit normal and normal velocity in
the reference configuration given by:

N(y) Viy) = (5)

VG

Az VGl

The equation of motion (1,) and a compatibility equation may be written :
C¥FIG, = pouiG

e 1j (6)

FﬂG =u G:B

where the prime indicates differentiation with respect to the parameter 7. The elasticities
C3/ are functions of F and are given by C% = dT%/0Fj. If G # 0 equation (6) may be re-
written with the aid of (5) as

(CTJBN(INB - po V25ij)u'j - 0
VFj+uiN, = 0. (7)

Furthermore, Varley shows that simple waves are regions swept out by one parameter
families of propagating planes or wavelets

Ly) = NoX*=V(yn. (8)

Inversion of equation (8) yields the function G(X, ¢).
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Equation (7,) shows that simple waves are carried by characteristic surfaces and propa-
gate with one of the characteristic speeds. It will be assumed for arbitrary direction of the
normal vector that the acoustic tensor Q;; = Ci¥N,N, is positive definite for all N and F
and has three linearly independent right proper vectors. This requirement assures that the
propagation speeds be real and non-zero and that three distinct wave types exist. Further-
more, it will be generally assumed that the propagation speeds are distinct. This last require-
ment is very strong and must severely restrict the class of materials or deformations to be
considered since isotropic materials, cubic materials, hexagonal materials, and perhaps
others as well all exhibit some degeneracy of wave speeds for the case F = 1. Fortunately.
in some important special cases the requirements for three distinct speeds may be lifted.
but in the general case the effect of degeneracy remains an open question.

Shock waves

Shock waves are propagating surfaces across which velocity and deformation gradients
are discontinuous. Their motion is described by equations (2)-(4). If F* and u™ are known.
then (2) may be written

(T(F, )~ T*(F y~ NN, = poV2d, 9)

For a fixed direction of propagation, N, and a fixed deformation gradient and velocity
F,,u, ahead of the wave, equation (9) gives three relations among the four quantities
a',a® a® and V. If it may be solved for a in terms of V, then this solution, together with
(3,) and (3,) rewritten as

Fi., = F, ,—d(V)N,

W=, +Vd(V) )
determines a one parameter family of shock waves. Other parameterizations may of course
be possible.

Let the three equations (9) be represented by the relations Ka, V) = 0. Then the
implicit function theorem [11] states that if (1) the K; are continuously differentiable.
(2) a, and V, are such that K(aq. V) = 0. and (3) the determinant det (K, /oa) )y, v, # 0.
then there is a neighborhood about (a,, V,) in which K; = 0 may be solved uniquely for
a = a(V). One solution of (9) is given by a = 0, V = V,, where Vj, is an arbitrary positive
number. The determinant in this case is given by

det w%f—]' = det [CH#(F )N, N;— po V5l {10)
which of course is the characteristic determinant. If ¥}, is not a characteristic velocity, then
the determinant is not zero and the unique but trivial solution a = 0 holds in a neighbor-
hood of (ay, V).

Of greater interest is the case in which ¥, is a characteristic velocity, ¥, = o=
2. 3. In this case the determinant is zero and the implicit function theorem does not apply.
Let it be assumed that inversion is still possible, but rather than V as a parameter, let (a, V)
be functions of the amplitude a = +|a|. (The sign is set automatically as shown below.)
If the functions are differentiable, then the derivatives d"a/da”, d"V/da" evaluated at the
point (a,, V) may be found by repeated differentiation of equation (9) and the equation
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that defines a (except for sign)

a’ = d'a;. (9a)
Thus
aTia 3 ’j 1 i
{WNaNﬁ‘POVZ‘S}}“’ =2poVV'a
! , (1)
aa’=a
6Ti‘1 2 si "y " i N2 i w21
6F1N“N”—p°V Spa"=2p VV'a' +2po(V'Ya' +4p,VV'a
B
~—-—-—62Tia NN ;N a"n* (12)
T aFp T A
a;a” = 1—da’
aTi‘l 2 i "j "o i 12 v ™1 N2 i " _1i
ﬁj—NaNp—poV &ipa™ = 2pVV"a +6pV'V"a' +6py(V')a' +6poV V7a
B
6poVV'a"+3 o°T" N,N;N. a’a"* (13)
FOPo Y A e E A
63Tia i
—mNaNﬂNbeaja a
aa”t = —3aa".

Solution is accomplished as follows. Equations (9) and (9a) are satisfied if a(0) = 0. Then
(11) and (12,) are satisfied if V(0) is a characteristic speed, V(0) = V™, m = 1,2, 3, and
2'(0) is equal to the corresponding unit right proper vector, a'(0) = r™. Since —r™ isalsoa
right proper vector, this selection fixes the sign for a = +|a| automatically. Negative roots,
— V™ are assigned to a negative normal, —N. They correspond to waves propagating in
the opposite direction.

Let 1 be the left proper vectors of the characteristic matrix normalized so that
1™ r,, = 8. Then the derivative V'(0) is found from (12,) after multiplication by the
appropriate left proper vector. In the special case where stress may be derived from a stored
energy function T = 0U/JF, this leads to the symmetric formula

V'(0) =

1 U y i "
4PoV(0)( GFE3F] 6F‘;)0a (O)N,a’(0)N 4a™ (O)N . (14)
Second derivatives a”(0) and V”(0) may be found from the two independent equations of
(12,), (this assumes the rank of the characteristic matrix to be two), together with (13,) and
after multiplication by the appropriate left proper vector (13,). Higher derivatives are
found by a similar procedure.

The above discussion suffices to show that if smooth solutions to equation (9) exist,
then vanishing amplitude occurs at a branch point. Furthermore, there are three branches,
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and these correspond exactly to the three possible simple waves in that for each branch
the shock speed in the limit of vanishing amplitude is equal to one of the characteristic
speeds. However, not all parts of the branches may be accepted as solutions on physical
grounds. For reasons of stability it may be argued that a shock wave must travel faster
than the corresponding type acceleration wave ahead of the shock and slower than the
corresponding type acceleration wave behind the shock. Some such criterion must be sub-
stituted for the thermodynamic one of increased entropy across a shock. Thus at least
for weak shocks, if V'(0) > 0, [V'(0) < 0] then only ¢ > 0{a < 0) is admissible. and if
VH{0) = 0 but ¥"(0) > 0[V"(0) < 0] then any {no) nonzero value of g is admissible. Of
course shocks may still be possible for large values of a even if weak shocks are not
admissible.

3. CHARACTERISTIC GEOMETRY {12] or |13]

A characteristic surface, (X, t} = 0 must satisfy the differential equation
D(E) = det(cyéa{ﬂ"f’oéééiﬂ =0 {15}

where § = ({5, <1, 2. 83) = (@,, 0., @, @ ;). The four vector & is a normal to the surface
¢ = const. in space-time and the homogencous function D(§), when set equal to zero, gives
the equation of a cone called the normal cone in &-space. Equation {15) is bicubic in &, so
that there are three sheets to the cone which may be denoted by

Co=UpME) N=10230=1273
{16)

-

Uy Uy <0,

If £, is a unit vector, then equation {(16) determines the propagation speeds of plane waves
with normal &,. If £, is taken to be a distance along the direction ¢, then (15)1s the equation
of the so called velocity surface or reciprocal normal surface. If we set &, = -1 then
equation (15) is the intersection of the normal cone with the hyperplane &, = —1 and the
surface so determined is called the slowness surface or normal surface. The name slowness
is appropriate because the radius in a given direction is the reciprocal of the velocity of
plane waves in the same direction. This is clear since the vy are homogeneous of degree
one so that [£,] ™" = [on(E/ALA)-

The wave cone is the hypersurface enveloped by the planes whose normals lie in the
normal cone. Alternatively it is the hypersurface swept out by the normals to the tangent
planes of the normal cone. The generators of the wave cone are tangent at its apex to the
bicharacteristic rays which are given by

X, = A— o«=101273 (17)

The prime indicates differentiation with respect to a ray parameter, p, and A is an arbitrary
proportional factor. The generators of the wave cone are straight lines

;
Xa:Aipr @ =0,1,23 (18)
&,

Since D is homogeneous of degree six in § we have § - X = 64pD = 0.
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The wave surface is the intersection of the wave cone with the hyperplane ¢ = 1 so that
if £, lies on the slowness surface, points on the wave surface satisfy X,{, = 1, = 1,2,3
which may be written

X,N, = vy (19)

after division by |£ ]. Thus the wave surface may be regarded as the envelope of all possible
plane waves at unit time after passing through the origin. The centers of the various waves
and surfaces described above may of course be translated to arbitrary points in space-
time. In this paper only two independent space variables are used so that the wave surface,
normal surface, etc. reduce to curves in the X-Y plane. It may be shown that the normal
curve may have inflection points but has no cusps whereas the wave curve may have cusps
but not inflection points. A typical slowness curve and wave curve for an elastic material
are shown in Fig. 1.

AN

(a) (b)

F1G. 1. (a) Slowness curve, and (b) wave curve (after Burridge [14]).

4. REFLECTION OF AN OBLIQUE SHOCK WAVE

Suppose that a plane shock approaches a plane boundary at an oblique angle 6, as in
Fig. 2. The shock has speed V;, normal N, = (sin ,, — cos 8,, 0) amplitude a, deformation
gradient and velocity ahead of the wave F;), u, and deformation gradient and velocity
behind the wave F;, u,. It is assumed that these quantities satisfy the jump conditions
given in equations (2) and (3) and that the shock wave is stable. Thus the shock lies on one
of the three branches which satisfy equation (9).

Vh X
7
= y o (A 0
s

N\

7/

F1G. 2. Incident shock wave and assumed configuration for reflected simple waves.
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The reflection problem is to be solved by a semi-inverse approach. It is assumed initially
that the reflection consists of three simple waves, one corresponding to each wave sheet.
The simple waves are assumed to be separated from the shock, each other, and the boundary
by regions of constant velocity and constant deformation gradient. Thus in Fig. 2 regions
2, 4 and 6 are simple waves and regions 0, 1, 3, 5 and 7 have constant state. Within each
simple wave every wavelet passes through @, the point of intersection between the shock
wave and the boundary.

Each simple wave is completely described by a one parameter set of functions where
the variations of the functions are given by the ordinary differential equation (7). The defor-
mation gradient and velocity are assumed to be continuous throughout regions 1-7. Thus
the initial values for the differential equations that describe region 2 are the constant values
of region 1, and the final values in region 2 (at the trailing edge of the wave} are the constant
values of region 3. In turn region 3 provides the initial values for the wave in region 4 and
so on. However, the value of the simple wave parameter in region 2 that maps into the boun-
dary between 2 and 3 is not known a priori. Thus the set of initial values for the wave in
region 4 is a one parameter family. Similarly the field values in regions 5 and 7 are two and
three parameter families respectively, where the three parameters fix the trailing edges of
the three simple waves. Boundary conditions at the material surface of region 7 provide
in implicit form a set of equations for the three parameters. To complete the problem
these equations must be solved for the three simple wave parameters in terms of the speci-
fying parameters of the incident shock wave.

The next three subsections set out in detail the solution described above.

Selection of reflected waves

Here it will be shown that the number and type of reflected waves may be determined
by examination of the roots of a certain polynomial. Since the point Q moves along the
boundary with speed V, = V,/sin 0,. the normal speed of a wavelet at angle 6 is V' =
V, sin 8 as is clear from Fig. 2. The wavelet normal is given by N = (sin #, —cos 8,0). For
every wavelet in each simple wave choose L(y) = 0. Thus equation (8) which specifies the
plane of a wavelet may be written

0= Xsinf—YcosB-Vtsinb. !
Let t = cot 0. We have t = (X — V,t)/ Y. Equation (7) for a simple wave may be written
(CHENN ;= poVid ;=0
V},F;;M—u'f!% = Q
where the normal divided by sin # has components N, = (1, —1,0). Let #(1) be the poly-
nomial in T given by
P(z) = det {CPN,Ny—poVidy! - 20)
The condition that nontrivial solutions for w’ exist is :#{z) = 0.
In general (z) is sixth order in 7 and in fact can never be less than sixth order. If it were

of lower order, then the coefficient of t° would vanish, i.e. det{C?*}. In turn this implies
that for the direction N = (0, 1, 0) one of the characteristic speeds vanishes contrary to

assumption.



Reflection of oblique shock waves in elastic solids 169

The real roots of #(z) may be interpreted geometrically as follows. (Refer to Fig. 3.)
About a point on the boundary, Q,, draw all three sheets of the wave curve. Recall that the
wave curve is the intersection of the wave cone with the hyperplane ¢ = 1 and thus is the
envelope over all directions of plane waves which might have passed through g, at t = 0.
Locate Q on the boundary at a distance ¥} from Q, and in the direction of passage of the
shock. From Q draw all possible tangents to the wave curve. Each tangent determines a
real value of 7 = cot 8, where 0 is the angle about Q clockwise from the boundary to the
tangent. It is clear that each value of t so determined is a real root of 2(r) and conversely
each real root of (1) corresponds to a line through @ and tangent to the wave curve.t

FiG. 3. Geometrical interpretation of the roots of #(1).

From the preceeding geometrical construction and from known properties of the wave
curve several statements may be made about the real roots of #(z). In any case, of course,
there must be an even number of real roots, 1.e. there must be 0, 2, 4 or 6 real roots.

1. If Q lies entirely within the core of a wave sheet (not within a cusped region), then
() has no real roots corresponding to that sheet.

2. If Q lies entirely outside a wave sheet, there exist exactly two real roots of #(z) corres-
ponding to that sheet.

3. If Q lies within a singly cusped region of a wave sheet, there exist exactly four real
roots of #(t} corresponding to that sheet.

4. If Q lies within a doubly cusped region of a wave sheet, there exist exactly six real
roots of Z(t) corresponding to that sheet.

5. Simple points on a wave sheet correspond to double roots of () and cusp points
correspond to triple roots.

To see properties 14 refer to Fig. 4. Consider an arbitrary point M on one of the wave
sheets and through the point construct the tangent. The tangent is divided into two parts
by M. Let M move around the wave sheet in such a way that the tangent turns continuously
clockwise. This is possible since the wave sheets have cusps but not inflection points. As

T The construction given here is dual to the one given by Musgrave for linear anisotropic wave reflections [15]
which is based on the slowness curve. The alternate construction could also be used here. The slowness of each
wavelet has components (¥, ', —t¥; !, 0). Values for 7 are determined from the intersections with the slowness
curve of a line drawn perpendicular to the plane boundary and at a distance V; ! from the center of the slowness
curve. In practice the construction from the slowness curve is probably simpler but the construction from the
wave curve is clearer conceptually.
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{b} {c}

FiG. 4. As M traverses the wave curve, each end of the tangent sweeps over (a) exterior points once, (b)
poinis in 4 single cusp twice, and (c) points in a double cusp three times. The point M moves according
to the arrows.

{a)

M moves around the curve it is easy to see that each half of the tangent sweeps over every
point (1) of the core interior never, (2) of the exterior once, (3) of the interior of a simple
cusp twice, and (4) of the interior of a double cusp three times. The fifth property follows
by considering the limit of tangent contact points M as Q approaches a wave sheet.

From this discussion it is clear that if ¥, is large enough, which is to say if 8, is small
enough, then there will exist six real roots of 2{z), two for each sheet of the wave curve.
All that is required is that Q lie entirely outside all sheets of the wave curve. If 0 lies within
a cusped region of one of the two inner sheets, there may also be six real roots of 2(z).
In this last case there seems to be no reason why the solution could not also be carried
through formally. However, it may have little significance for the following reason. At the
first instant that the angle between the incident shock and the boundary is such that ¢
lies inside the outer wave sheet, one might expect that a new wave front corresponding to
the outer sheet would break away and move ahead of the point Q. If this occurs, nonlinear
interaction between the incident shock and the new wave will distort the wave pattern
locally so that a solution which involves only plane simple waves will probably no longer
be applicable. Such an objection does not carry quite as much weight in the infinitesimal
case of course because then there would be no nonlinear interaction or distortion.

The geometrical construction of reflected plane waves may also be viewed in the
following way. The moving point Q, at which the shock wave meets the boundary, lies on
the line #:X = V,t in space-time. In a sense .¢ is a source for reflected wavelets. There-
fore, reflected wavelets should be generated by rays which originate on % and which by
reason of causality point both into the material and forward in time, ie. toward positive
Y and positive t. For F fixed, the set of all rays through a point on .# generates a wave cone
with vertex at the point and the desired reflected wavelets are envelopes of all the wave
cones which have vertices on .#. The rays which generate the reflected wavelets are pre-
cisely those of each cone which lie in the envelope and point toward positive Y and positive
t. Let 4 be the ray which lies in a reflected wavelet and in the wave cone with vertex at Q).
Then in the plane ¢ = 1 the projected image of # is a radius of the wave curve about Q.
The intersection of the reflected wavelet with the plane ¢ = 1 is the line which 1s tangent
to the wave curve and which passes through Q, and the radius and tangent meet at the
point of tangency to the wave curve. The image of one ray is shown in Fig. 3.

This discussion makes it clear that the only real roots of (1) which correspond to
reflected waves are those for which the tangent point lies in the material since only then
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will the rays of the wave point into the material. Furthermore, half of the real roots corres-
pond to tangent points in the material and half correspond to tangent points on the other
side of the boundary. [In the exceptional case where Q itself lies on the wave curve and
(1) has multiple roots this does not hold of course.] To see this recall that when the point
of tangency, M, moves around the sheet, each half of a tangent sweeps through every
point in the plane the same number of times as the other half. The point M will lie in the
material whenever one half sweeps over Q (the left half for an observer at M facing along
N, the direction of propagation) and outside the material when the other half sweeps over
0.
Thus there are at most three real roots of (1) that correspond to refiected waves. If
Q lies outside all three wave sheets, the three algebraically smallest values of 7 correspond
to reflected waves. This is the most important case and the one of primary concern in this
paper.
In addition to the requirement 2(t) = 0, in order to satisfy (7} it must be required that
v’ be a right proper vector of Q;; = C¥!N,N,. A distinct root of #(t) determines a fixed
direction N and for each fixed direction it has been assumed that Q has three distinct
proper numbers and hence three unique (within a scalar) right proper vectors. Thus '
may be written
w = VwFrF) 21

where w is an arbitrary scaler function and r(F) is any right proper vector that corresponds
to direction N and the proper number p, V7 sin? §.

Distribution of wavelets

To complete the reflection problem it remains only to determine the strength and angle
of every wavelet within the three simple waves where each simple wave is described by a
system of ordinary differential equations. Let the three roots of (1) that correspond to
reflected waves be denoted by t = 6,,(F) where m = 2,4 or 6 and

02)F) > 64)(F) > a(F).
The appropriate equations follow from (7;) and (21)

Fiomt = = W(E)rly(F)

F qu)z = W(m)(F)a(m)(F)r{m)(F )

Fys =0 -
”Efn) = Vh“’(m)(F)"{m)(F ).
Equations (22) are subject to the initial conditions
F§,‘Z}, =Fp-1
(23)

(0) _.
Wom) = Wm— 1)
that is to say, the field values in the simple waves are continuous across the wave fronts.

The functions w,,,(F) may be chosen for convenience since they represent only a relabeling
of the wavelets in the sense that the systems

d d d
d—j =f(») and é = Wiy (), a% = w(y)
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are equivalent. They are strictly equivalent if w has no zeros but since the label y or % has
no intrinsic importance, the function w(F) may actually be chosen so as to ensure unique-
ness or case of solution or for any other desirable property. Of course once the solution
F(y) is found, the distribution of the wavelets follows by substitution so that v = o[F(y)].
Clearly Fi,; = F{l,3 for each m and the solution of (22,) follows by quadrature once the
solution to (22,) and (22,) is known.

The value of F changes through a simple wave, but the ordering of the values of ¢!,
¢ and ¢'® cannot change. If they could change, then, since the roots of a polynomial of a
fixed order are continuous functions of the polynomial coefficients which for the problem
at hand in turn are continuous functions of F, and hence of the wave parameter, y, then for
some value of y, two roots of #(t) would be equal. This implies that for a certain direction
of propagation two characteristic speeds are equal, but this case has been ruled out by
assumption. The ordering ensures that the three simple waves will in fact be separated by
regions of constant state.

Now let 4, 4 and v be the independent parameters in waves (2), (4) and (6) respectively
and define the vector NU™(F) = [\1, —o™(F), 0]. We have (refer to Fig. 2)
(1) In region (1)

F=F,. (24)
(11) In region (2)
F = F;(4) . s s
¢ = ¢ (F) on0< s <2 (25}
where
dF},,, N )
d4(/2)“ = —-N LZ)(F)rfzy(F)W(Z)(F)
(26}
F3)0) = F,y,.
(ii1) In region (3)
F = F, = F,(4). {27
(iv) In region (4)
F= F(4)(,U;Z) ~ 283
¢ = ¢ (F) on0<pu<i {28}
where
dFy,, “ )
e _N§4)(F)724)(F)W(4)(F)
du
29
F(4)(0) = Fg,.

(v) In region (5)
F = Fs, = Fufi: A) {30



Reflection of oblique shock waves in elastic solids 173

(vi) In region (6)

F=F<6>(V;ﬂ’z)} on0<v<7 (31)
T = 06)(F)
where
Wl — — R E o F o F) )
F)(0) = Fs).
(vii) In region 7
F = F;) = Fe¥; 4, 4). (33)

To complete the solution a boundary condition for region (7) must be met. The extreme
conditions are the completely hard or clamped boundary u = 0 and the completely soft
or free boundary TN, = 0 where N = (0, — 1, 0). In the general case there will be three
boundary conditions from which to calculate the three parameters 4, i, # in terms of the
deformation gradient ahead of the shock, F,,,, incident angle, 8,, shock type and ampli-
tude, a.

Comments on existence

No general existence theory exists for the solution of the mathematical problem posed
by equations (24)~(33) together with an appropriate boundary condition. A complete
theory would no doubt depend strongly on the properties of the constitutive functions as
well as the parameters of the incident shock wave.

However, it is possible to state a simple existence theorem for small but finite amplitude
waves. If for a fixed F,), 8, and incident shock wave type, there is a unique reflection solu-
tion for the infinitesimal theory linearized about the deformation gradient F g, and velocity
u, then there is a neighborhood about 4 = i = ¥ = 0 and a = 0 (i.e. vanishing amplitude
of the incident shock) within which the finite reflection problem has a unique solution for
4, fi and ¥ in terms of a and the parameters F,q, and 0,. This follows from a simple applica-
tion of the implicit function theorem. For fixed F,, and 6, the values L = i =7 =a = 0
satisfy the boundary conditions and in each simple wave the deformation gradient and
velocity take on only their initial value. That is to say, the case of vanishing shock amplitude
has the solution of vanishing reflections. Let the boundary conditions to be met be denoted
by B(4, fi, 9, a; F g, 0o) = 0F and let J(1, i, ¥, a; F o), 0) denote the Jacobian of the deriva-
tives of B taken with respect to 4, i, . Then the condition J(0, 0, 0,0; Fo), 00) # Oissimul-
taneously the condition for invertibility of B = 0 in a neighborhood of I = i =¥ =a = 0
and the condition for solution of the linear problem as may easily be verified at least for
the clamped or free boundary.

Once 4, ji and ¥ have been determined, the geometry and distribution of wavelets are
completely determined and the results may be accepted as a solution to the reflection
problem provided that within each simple wave the function ¢"(F) is a real monotonically
decreasing function of the appropriate parameters. This corresponds to monotonically
increasing angle § as the parameter ranges from zero to its maximum value (or minimum

t For example T*(F;)) = 0, free boundary; or u{,, = 0 clamped boundary.
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value if say 4 < 0) and is required to insure a single valued solution of the reflection prob-
lem as a whole.

Failure of the simple wave solution and the possibility of reflected shocks

It may happen that for one or more of the simple waves the function ¢™4F) is not
monotonically decreasing over the whole range of the parameter. If it increases monotoni-
cally, then the reflected simple wave should probably be replaced by a reflected shock wave
of the same type. In this case it is necessary to solve equations (9) and (9a) for 4 and a as
functions of amplitude a on the appropriate branch. In these equations ¥ = I, sin .
N = (sin 0, —cos , f}and F,, is the deformation gradient ahead of the shock. Once again
a reflected wave may be specified completely in terms of a single parameter so that in region
{7) there are again three parameters to be determined from the boundary conditions. All
shock waves in the solution must be checked for stability of course. Finally, it should be
noted that as before, if the linear problem has a solution, then for this case as well there is
a solution in the neighborhood of vanishing incident shock and vanishing reflected waves.
The proof is the same as before.

Another possibility is that ¢"(F) for one or more of the waves is real but is not mono-
tonic at all. In this case the simple wave should probably be replaced by a combination
shock and simple wave. This case is more complicated than the previous ones and will
not be discussed further.

Comments on critical angles

The solution by simple waves fails if one of the functions ¢"™(F) becomes complex for
some value of the parameter. Recall that complex values of 6'™(F) correspond to the point
Q lying within the mth sheet of the wave curve. When Q lies on the outer wave sheet, the
critical angle has been reached for simple wave reflections. This phenomenon is amplitude
dependent as well as orientation dependent. For fixed amplitude of the incident shock the
point Q moves toward the outer wave sheet as the incident angle 0, increases. This is similar
{0 the linear case except that here the wave sheet geometry for the leading edge of the
reflected simple wave depends on F;, which in turn depends on 6, and the amplitude of
the incident shock. In order that the shock wave be stable it must intersect the correspond-
ing wave sheet if both are extended through the material boundary (see Fig. 5). This is

FiG. 5. Relation between incident and reflected shock waves and wave curves.
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required since acceleration waves of the same type behind the shock must travel faster
than the shock itself. Thus even for fixed angles of incidence the point Q may approach
the outer wave sheet as amplitude increases.

This discussion should make it clear that critical angles occur for shock waves that
correspond to the outer wave sheet as well as for those that correspond to the inner sheets.
This is in direct contrast to linear theory where critical angles occur only for the inner
sheets.

Similarly if the first reflected wave is a shock wave it may happen that for some incident
angles or amplitudes the solution fails. Whereas the leading edge of a simple wave at angle 6
must be tangent to the outer wave sheet computed for F;, a shock wave must lie at an
angle less than 8 since for reasons of stability it must have a higher speed of propagation
than that of an acceleration wave of the same type in the region ahead of the shock (sece
Fig. 5). Furthermore, the exact angle of the reflection depends on the strength of the re-
flection as well. In any case if the solution fails it fails for angles of incidence and amplitudes
such that the point Q lies outside the wave sheet. Thus for a fixed amplitude of the incident
shock, the critical angle is smaller for the case of reflected shock waves than for the case of
reflected simple waves.

If a critical angle occurs for either the reflected simple wave or reflected shock wave,
it is for the same reason physically. The point at which the plane shock wave would inter-
sect the material surface does not move fast enough to keep up with the slowest plane waves
which are consistent with the outer wave sheet. Consequently waves break away from
point Q and interact with and modify the incident shock itself. There are two possibilities.
On the one hand the incident shock may be strengthened and tend to speed up along the
boundary and in this case it seems likely that a mach stem will form. On the other hand the
incident shock may be weakened and tend to slow down along the boundary and in that
case the shock may become curved.

5. DISCUSSION OF SPECIAL CASES

Transverse symmetry

Three reflected waves are needed generally to meet boundary conditions. Nevertheless,
if the material and the deformation possess sufficient symmetry with respect to the X-Y
plane, only two reflected waves may be required. Sufficient conditions for this to occur are
as follows. Direct tensor notation is used.

According to the rules of material symmetry and the principle of material indifference
[9] the following holds for arbitrary rotations R and for every unimodular tensor H where
H belongs to the isotropy group of the material.

T(F) = (det R)" }(det H) " 'RTT(RFH)H". (34)
Now suppose that in the given Cartesian frame F has the representation
i l m f |

[Fl=lp ¢ rl. (35)
S t U
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If particular R and H both have the representation

i1 0
xO 1
oo
then equation (34) implies that
E!T“ T2 T”’Ej Efl m n{f
T 722 723;2‘ as functions of%ép g rl
il i i H
15 CER EER R sl
{36)
Con T2 T3y, o m —ny
J ) i I
-_—}1 TH T??  —T?% as functions of | p g -ri
=13t 132 733 H—s —1 ul

Suppose n = r =1 = 0. Then T!', T'2 T2' T?? are even in s, and 8T} /és etc. are odd
in 5 and hence vanish for s = 0. Furthermore 73!, T32, T'3, 723 and all their derivatives
with respect to / are odd in s and hence vanish for s = 0. These and similar arguments
concerning the behavior of T as a function of the other components of F demonstrate that
for all normals N = {, 8, 0) and deformations

i m 04
Fl=1lp 4 o (37)
00wl
the acoustic tensor Q has the representation
u b (IR
Qi=lc d o) (38)
! |

o0 e

The tensor Q has one right proper vector along the z axis and two in the x-y plane. This
fact together with equation (7,) implies that for two reflected waves F/ = 0 if either j = 3
or o = 3. Thus if F in the region ahead of these two waves is given by equation (37) then it
has the same representation in each wave and in the adjacent constant regions. Similarly,
since w' is proportional to the right proper vectors of Q, if u lies in the x—y plane ahead of
the two waves, then it also lies in the x—y plane in the waves and in the adjacent constant
regions. Thus throughout the material T3? = 0 and u® = 0. Examination of equations
(11,), (12,) and (13,) indicates that if F has the form of equation (37) ahead of a shock wave
then there are two waves possible with amplitude vector a lying in the x-y plane and F
retains the form of equation (37) behind the wave. This is true since a’(0) is a right proper
vector of Q and it lies in the x—y plane. Thus all higher derivatives a”(0), a”(0), etc. lie in the
x~y plane and a (a) expanded in a power series about ¢ = 0 lies in the x-y plane.

The preceding arguments may be summarized by the following statement. If a shock
wave with polarization in the x—y plane propagates into a region with deformation given
by equation (37), if the material is symmetric with respect to reflections across the X~ Y plane,
and if one boundary condition to be met is either T3? = O oru® = 0O on Y = 0 then at most
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two reflected waves are required. In particular the statement covers the important case of
reflections in an isotropic material in which a normal shock or a quasi-transverse shock
with polarization in the x—y plane propagates into a region in which one boundary condition
is as above.T However, it does not cover the case of a quasi-transverse shock with a non-
zero z-component of polarization.

Incompressible materials

In an incompressible elastic material there are only two sheets to the wave cone rather
than three and both waves are always of strictly transverse type. If a reflection solution in
terms of simple waves is attempted, the deformation and velocity behind the wave will be
given in terms of two parameters, yet three boundary conditions must be met. In general
the problem will have no solution for in effect the third sheet has infinite propagation speed
and every case is a critical angle case except for normal incidence. However, solutions may
exist for special cases in which the material and the deformation exhibit degeneracy so that
there exists some functional dependence among the boundary conditions.

As an example of this degenerate type behavior consider an incompressible isotropic
material with constitutive equation

T = —4F~ )" +h (s, lg)F. (39)

Here 4 is an arbitrary function and h, is a smooth function of the first two invariants of
the left Cauchy-Green strain tensor B = FF”. This is a modest generalization of Rivlin’s
neo-Hookean material [17] in which h, is a constant.} Further assume the deformation
gradient to have the form

1 0 0 s 0 —zy4
IFl =10 1 O FHf=]0 1 -z, (40)
zx zy 1 0 0 1

and that x = y = 0. All motion is restricted to the z direction. Thus there is degeneracy in
both the constitutive relation and in the deformations allowed. The invariants are given by

IB = 1+Z,2X+Z?Y

Hg = —(1+2%+2%). (41)
It is convenient for the restricted deformation assumed here to let
hI(IB, Ilg) = h[%(z?x+z,zy)] 42)

where h is a function of only one argument. If we set/4 = h then the momentum equation
(1,) is satisfied for i = 1, 2. Application of the theory of simple waves to the third equation
alone leads to

(C*NN,— po V3 =0

VZ,+ Nz =0 (43)

t Thc[e slowness curves and wave curves appropriate for these cases have recently been described in detail by
Payton [16].

1 The most general incompressible isotropic material has constitutive equation [9] T= —-2F HT+
hy(lg, Hg)F + hy(lg, I1g)FFTF.
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where o, f = 1,2 and
ET&a
CP = o =3 h+z,z,h (44)
0y
The backward prime indicates differentiation with respect to the argument of i whereas

the ordinary prime indicates differentiation with respect to the simple wave parameter as
before. Wave speeds are given by

V= tipg [h+(z N Ph] (45)
and 2’ is arbitrary. Resolved shear traction on planes Z = const. is given by
T =[(T")?+(T**?} = vhi3v?) (46)

where v = (zz,)!. The reciprocal normal curve or velocity curve, given by equation (45)
takes on its extreme values when N is parallel or orthogonal to Vz. These extreme values are
T/v and dT/dv. If dT/dv > O for all v, then wave speeds are always real since T vanishes
when v does.

Suppose a shock of amplitude a propagates into an unstressed region. Then for arbi-
trary angle with the boundary, 6, the shock speed is given by

i | % 1.2y]3
- [T‘“)_/_E‘] _ [_’_’_(yz_)] )
P Po

where behind the shock v = a,z, = —aN,, N = (sin 0, —cos0,,0)and 7 = aV,. Assume
T(v) to be concave up so that the shock is stable. Reflected wavelets lie on planes with co-
tangent given by

= _
h+z%'h

zxzyh f poVi  Wh+vTh)] @8
ht2ih (h+ 2y |

For z to be real the term in brackets must be positive. For the case when the reflected wave
is a simple wave, to be less than the critical angle the incident angle must satisfy

cot? 6, > HE;’% (49)
To complete the problem the following equations must be integrated.
=Wl #0) = aV;
Zy=—f z4(0) = —asinb, (50)
iy = 15 z,d0) = acos b,

where f is an arbitrary function. . ‘
If the boundary condition to be met is T = zh = 0, it is convenient to choose

f= —1"!for then
zy(d) = —A+2z(0)
22) = —Vylz x(A)—z x(0)] +2(0)

(51)
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where dzy/dA = 171, z,4(0) = —asin§, and the boundary condition is satisfied when
A = z (0). Substitution for z y and z y in the equation for  completes the solution. If the
boundary condition to be met is z =0 on Y = 0, it is convenient to choose f= — V!
for then (1) = — A+ 2(0) and the boundary condition is satisfied when A = Z(0).

Elastic fluid

Another example, more realistic than the last but still a rather degenerate case is that
of an elastic fluid. In this case the only stress is a normal pressure, 4%, which depends only
on the density. The Piola stress tensor is

T=—-JuHEFHT (52)
where J = det F. The elasticities are given by
Cf = —Jp+I PXIX]+ I pX XY, (53)

Here again the backward prime indicates differentiation with respect to the argument.
Velocity of propagation is given by

V= t[~po "M XIXINNg* (54)
For V to be real we must have %(J) < 0. Equation (54) is equivalent to the more usual
expression
d
v = _\/(—ﬁ- -n.u (55)
dp

where v is the spatial velocity of the wave, m is the spatial normal and p is the density
p = poJ ~'. The derivative of the particle velocity is given by

u’ = wX*N, (56)

where w is an arbitrary function and n; = kX*N,, that is to say u is parallel to the spatial
normal, n.

Suppose a shock of amplitude a propagates into an unstressed region. Then for arbi-
trary angle with the boundary, 8, the shock speed is given by

V= [ﬁ(l—a)—ﬁ(l)]* (57)

Pod

and behind the shock #' = aVn; and x’, = 6. —an,N,. The material and spatial normals
are equal Ny = n, = (sin 8,, —cos 6,, 0). Assume 4(p) to be concave up so that the shock
is stable.

The normals in each reflected wavelet are N = (sin 6, —cos 6, 0) so that by equation
(72) x5 = 0, which together with the appropriate initial conditions implies that xiy = 8%
throughout the reflection zone. This in turn implies that X% = 63 so that by equation (56)
u® = 0 and by equation (7,) x2 = 0. We have x3, = 6. Thus there are only four com-
ponents of the deformation gradient to be found.

Xy xy O Yy —Xy 0
IF| = yx vy 0|, IF~1 = 1/J —Vx X, x 0
0 0 1 0 0 J (58)

J= X xVy—Xy) x.
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The cotangent of the angle for each wavelet is given by

_ yq)’y“\/ + xva,,\ J ’ }"fy ‘*‘sz)( : 59

- e e e —— 4,_,,‘ ,7,\’77 _— { D
Vi +xk Vi +xk {— 72 IpoVi) e

For real 7 the term in brackets must be non-negative. In the case of a reflected simple wave

this requirement again leads to an expression which the incident angle must satisfy in order

not to equal or exceed the critical angle.

(’2
cot? 8, > f/_f“ —a)? {603

s

where c is the acoustic speed behind the shock ¢* = d#/dp evaluated at p = poll— )

To complete the solution the following equations must be integrated for i = 1.2 and
o=172
u't = wXiN,: u(0) = aV,nl0)
V= —wXIN,RL: xi(0) = & — anfO)N,(0). (el)

In these equations w is an arbitrary function of x',, X% is given by (58,), N = (1, — ¢, 0},
t is given by (59), n(0) = N(0) = (sin 6,, —cos 8y, 0), ¥, = V,/sin 0, and V, is given by (57:.
If the boundary condition is given in terms of pressure, so that the density and Jacobian arc
known for Y = 0, it is convenient to choose w = —V(X*XAN,Ny) ' = -, ' dp/dp.
In this case the simple wave parameter is related to J by 4 = In(J/1 —a) as may easily be
seen by multiplying (61,) by JX% and substituting for w so that the equation becomes
J =

Other problems

The methods used to solve the oblique shock reflection problem may also be used to
solve a number of closely related problems. For example, in the case of a plane shock wave
which impinges at an oblique angle on a plane of material discontinuity, it is natural to
assume the presence of three reflected simple waves or shocks and three transmitted
simple waves or shocks. Each shock and each simple wavelet must pass through the same
point, Q, which moves along the common boundary at constant speed. There will be six
wave parameters to be determined from the six conditions that velocity and traction be
continuous at the plane boundary. A critical angle may occur for material on either side
of the boundary.

As another example consider the case where the boundary condition prescribes a
moving step discontinuity in surface traction or surface velocity. The discontinuity is to
move at a constant speed V, along the boundary and separates two semi-infinite regions
of constant surface traction or velocity. The case of discontinuous velocity is a generaliza-
tion of the well known expansion or contraction corner in steady gas dynamics. In either
case three simple waves or shocks trail from the moving point of discontinuity.

Finally it should be pointed out that the case of normal reflection or normal wave
generation by step loading can be treated in a way virtually identical to the oblique reflection
case with the additional simplification that N = (0, 1, 0) for all three waves. There is no
need to find 7 as a function of deformation gradient and equations (7) may be used directly.
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AGcrpakt—MHccenyercs oTpaxenue KOHEYHOH yIpyroi, IOCKOH, yOIApHOM BOJHBI OT IUIOCKOH Iepero-
ponku. Mcnosbiyercs NosiyobpaTHeR MeTon peuleHHs. PaccMaTpuBaloTcss mOAPOBHO TOMBKO yIibI
yaapa MeHblile KpUTHYECKOTO yria.

BooGute, CyulecTBYIOT TPH OTPaXeHHble BOJIHBI, KOTOPbIE MOTYT 61;11-1, MPOCTHIMH BOJIHAMM HJIH
yIAPHBLIMH.

Haxomutes, 4T0 KaXabli POA OTPaXeHHOH BOJHBI MOXHO NMOJTHO ONPEAEINTE OQUHAPHBIM IAPAMETPOM,
€Cli YCIOBHS Ha (POHTE BOJHBI M3BECTHHI. I'paHMYHBIE YCIOBUS HAa IUIOCKOH MOBEPXHOCTH IOJIKHBE
ObITb pewleHBl OIS ONPEJENeHHbIX NapaMeTpos. POPMYIMPYETCs NPOCTas TEOPEMA CYLIECTBOBAHMS,
obcyxparoTcs Clyyan KPHTHYECKOTO YIJIa M AAIOTCH HEKOTOPBIE NIPOCThIE IPHMEPH.



